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We have used the so-called static fluctuation approximation (SFA) to calculate the
thermodynamic properties of spin-polarized 3He–HeII mixtures at low temperature,
T < 0.025 K. This approximation is based on the replacement of the square of the
local-field operator with its mean value. A closed set of nonlinear integral equations
is derived for spin-up and spin-down systems. This set is solved numerically by an
iteration method for a realistic interhelium potential. The mean internal energy per unit
volume, the pressure, the entropy per unit volume, and the specific heat per unit volume
increase with increasing temperature. The mean internal energy per unit volume, the
pressure increase with increasing spin polarization; while the entropy per unit volume
and the specific heat per unit volume are weakly-dependent on spin polarization.

KEY WORDS: spin-polarized system; static fluctuation approximation; 3He-HeII
mixtures.

1. INTRODUCTION

In this paper, we shall study the thermodynamic properties of the spin-
polarized 3He–HeII mixtures from the microscopic point of view. This is a weakly-
interacting neutral many-fermionic system.

The 3He–HeII mixture is an interesting system for several reasons. For one,
it is widely used as a refrigerant for cooling purposes up to the milliKelvin
range (Kelly, 1973). For another, it is a model system for testing theories of
weakly-interacting fermions. The polarized mixture provides us with an even better
testing ground for the underlying quantum physics. It is a ‘natural laboratory’ for
studying properties of matter in an extremely pure environment, where most of
the unavoidable disturbances present at higher temperatures are almost completely
‘frozen out.’
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This system has been studied theoretically from various perspectives. The
magnetokinetic effects have been investigated at arbitrary temperatures, impurity
concentrations, and magnetic fields (Meyerovich, 1978). In strong magnetic fields,
the kinetic coefficients have been found to increase exponentially with the field.
Also, the superfliud phases of 3He in 3He–HeII mixtures in the presence of a
magnetic field have been discussed (Meyerovich, 1980). Observation of these
phases seems to be possible, and their properties appear to be as interesting as
the properties of superfluid (pure) 3He. A variational method has been used to
determine the viscosity of the dilute spin-polarized mixture (Hampson et al.,
1988). Variations in the thermodynamic properties arise from the changes in both
the density of states and the kinetic energy of the quasiparticles (Bradley, 1997).

Experimentally, there have been two major tracks. The first has been the study
of the spin dynamics and transport properties of these mixtures. Pulsed-NMR
techniques have been used to investigate longitudinal spin diffusion and non-
linear spin dynamics in dilute spin-polarized 3He–HeII mixtures between 4 and
400 mK (Nunes et al., 1992). Transverse spin diffusion and spin rotation in very
dilute spin-polarized 3He–HeII mixtures have been measured by an 8-T magnetic
field<TB:break/> (Candela et al., 1991). The second track has been the develop-
ment of the technology to produce spin-polarized mixtures. A polarization of 56%
has been obtained in a 4% 3He–HeII mixture at 200 mK (Candela et al., 1994).
Spin-polarized 3He–HeII mixtures are prepared by the fast liquefaction of a vapor
highly polarized by laser optical pumping. A nuclear polarization of order 25%
has been obtained in the liquid (Villard et al., 2000).

In this paper, we are interested in the thermodynamic properties of spin-
polarized 3He–HeII mixtures at temperatures less than the Fermi degeneracy tem-
perature ∼0.1 K. We shall apply for the first time in this context the so-called static
fluctuation approximation (SFA). The SFA has already been used to study various
systems, such as the classical two-dimensional Ising model (Nigmatullin et al.,
2000a); liquid helium-4 (Al-Sugheir et al., 2001); liquid helium-3 (Al-Sugheir
and Ghassib, 2002); and 3He–HeII (Al-Sugheir, 2004). The underlying physical
idea is to replace the square of the local-field operator with its mean value. The
physical implication is that the true quantum-mechanical spectrum of this opera-
tor is replaced with a distribution around the expectation value of the local-field
operator (Al-Sugheir, 2004; Al-Sugheir et al., 2001; Al-Sugheir and Ghassib,
2002; Nigmatullin et al., 2000a,b,c; Nigmatullin and Toboev, 1989).

We shall consider an extended system of N3
3He atoms, each of mass m3,

occupying a volume �3, embedded in a HeII background of N4 atoms, occupying
a volume �4. We know that 4He atoms are spinless bosons, while 3He are fermions
with spin 1/2. It should be noted that this mixture of 3He–HeII, at temperatures
less than the Fermi degeneracy temperature (∼0.1 K at zero pressure), is a dilute
weakly-interacting neutral many-fermionic system. This is because of the negli-
gible number density of Bose-type excitations (phonons and rotons) under these



Spin-Polarized 3He–HeII Mixtures in the SFA 161

circumstances, and the dominance of the 3He quasiparticles (Kittel and Kroemer,
1995; Wilks, 1967). 3He–HeII mixtures have an additional degree of freedom,
which is the 3He concentration. This degree of freedom enables us to study the
density effect on the various properties.

The rest of the paper is organized as follows. Section 2 involves a full deriva-
tion of the closed set of nonlinear integral equations for spin-polarized 3He–HeII
mixtures. Section 3 is devoted to the calculations and numerics. Section 4 sum-
marizes the results. Finally, in Section 5, the paper closes with some concluding
remarks.

2. THE STATIC FLUCTUATION APPROXIMATION
FOR SPIN-POLARIZED 3He–HeII MIXTURES

For a specific Hamiltonian Ĥ , the Heisenberg representation of a creation
operator â+

kλ is given by

â+
kλ(τ ) = exp(τĤ )â+

kλ(0) exp(−τĤ ), (1)

where τ ≡ it . The equation of motion of the creation operator in this representation
can be written in the form

dâ+
kλ(τ )

dτ
= [Ĥ , â+

kλ(τ )]. (2)

Here k and λ are indices denoting the complete set of compatible quantum numbers
describing a specific state, where �k denotes the linear momentum of the particle and
λ = ± 1

2 is the spin of the particle. According to the well-known anticommutation
relations for a Fermi system:

{âkλ, â
+
qλ1

} = δkqδλλ1 ; {âkλ, âqλ1} = {â+
kλ, â

+
qλ1

} = 0.

The total Hamiltonian for neutral many-fermionic systems in second quantization
can be written as

Ĥ =
∫

d�r�̂+(�r)

(
− h2

2m
∇2

)
�̂(�r)

+1

2

∫ ∫
d�r1d�r2�̂

+(�r1)�̂+(�r2)V (�r1 − �r2)�̂(�r2)�̂(r1). (3)

Here �̂(�r) and �̂+(�r) are the field operators, h is Planck’s constant (h ≡ h/2π ≡
Dirac’s constant), m is the fermionic mass, and V (�r1 − �r2) is the pairwise central
potential that depends only on the modulus of |�r1 − �r2|.
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It is convenient to write the field operators as linear combinations of the
creation and annihilation operators:

�̂(�r) =
∑
�kλ

ψ�kλ(�r)â�kλ; (4)

�̂+(�r) =
∑
�kλ

ψ+
�kλ

(�r)â+
�kλ

, (5)

where the coefficients ψ�kλ(�r), ψ+
�kλ

(�r) are the single-particle wavefunctions and the
sum is over the complete set of single-particle quantum numbers.

In a uniform homogeneous infinite system, all physical properties must, of
course, be invariant under spatial translations. This suggests that the single-particle
wavefunctions are plane waves:

ψ�kλ(�r) = 1√
�

exp(i�k · �r)ηλ, (6)

where � is the normalization volume of the system and ηλ are the two spin
wavefunctions.

Integration over the spatial coordinates of Eq. (3) gives the Hamiltonian in
second quantization (Al-Sugheir, 2004; Fetter and Walecka, 1971; Stoof et al.,
1996):

Ĥ =
∑
�kλ

ε(�k)â+
�kλ

â�kλ + 1

2�

∑
�k �p�q

∑
λλ1

V (q)â+
�k+�q,λ

â+
�p−�q,λ1

â �pλ1 â�kλ, (7)

where ε(�k) is the kinetic energy:

ε(�k) = h2k2

2m∗
3

, (8)

m∗
3 being the effective mass of a 3He atom, and V (q) being the Fourier transform

of the pair potential defined as

V (q) =
∫

V (r) exp(i �q · �r)d�r. (9)

The grand canonical Hamiltonian of this system is

Ĥ =
∑
�kλ

(ε(�k) − µλ)â+
�kλ

â�kλ + 1

2�

∑
�k �p�q

∑
λλ1

V (q)â+
�k+�q,λ

â+
�p−�q,λ1

â �pλ1 â�kλ, (10)

where µλ is the effective chemical potential, which depends on the spin state of
the particle for a spin-polarized system. For spin-up particles:

µ↑ = µ3 + �MHe · �B
= µ3 + MHeB; (11)
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and for spin-down particles:

µ↓ = µ3 + �MHe · �B
= µ3 − MHeB, (12)

where µ3 is the chemical potential of 3He–HeII mixtures in the absence of the
magnetic field, MHe is the magnetic moment of 3He, and �B is the applied mag-
netic field. The effective chemical potentials µ↑ and µ↓ are determined from the
conditions

ρ3↑ = 1

�

∑
�k

〈n̂�k↑〉; (13)

and

ρ3↓ = 1

�

∑
�k

〈n̂�k↓〉, (14)

ρ3↑ (ρ3↓) being the number density of spin-up (-down) 3He particles in the mixture.
By summing over the spin indices λ and λ1, we obtain

Ĥ =
∑

�k
(ε(�k) − µ↑)â+

�k↑â�k↑ +
∑

�k
(ε(�k) − µ↓)â+

�k↓â�k↓

+ 1

2�

∑
�k �p�q

V (q)(â+
�k+�q,↓â�k↓â+

�p−�q,↑â �p↑ + â+
�p−�q,↑â �p↑â+

�k+�q,↓â�k↓

+â+
�k+�q,↑â+

�p−�q,↑âp↑â�k↑ + â+
�k+�q,↓â+

�p−�q,↓â �p↓â�k↓). (15)

The first two terms are the kinetic energies of the spin-up and spin-down particles,
respectively. The third and the fourth terms represent the spin-up – spin-down
interaction, while the fifth and the sixth terms represent spin-up – spin-up and
spin-down – spin-down interactions, respectively. So, we can define the following:

Ĥ1 =
∑

�k
(ε(�k) − µ↑)n̂�k↑; (16)

Ĥ2 =
∑

�k
(ε(�k) − µ↓)n̂�k↓; (17)

Ĥ3 = 1

2�

∑
�k �p�q

V (q)(â+
�k+�q,↓â�k↓â+

�p−�q,↑â �p↑); (18)

Ĥ4 = 1

2�

∑
�k �p�q

V (q)(â+
�p−�q,↑â �p↑â+

�k+�q,↓â�k↓); (19)
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Ĥ5 = 1

2�

∑
�k �p�q

V (q)(â+
�k+�q,↑â+

�p−�q,↑âp↑â�k↑); (20)

Ĥ6 = 1

2�

∑
�k �p�q

V (q)(â+
�k+�q,↓â+

�p−�q,↓â �p↓â�k↓). (21)

We note that Ĥ3 = Ĥ4.
Based on the SFA, the Hamiltonian can be expressed as a linear combination

of local-field operators A(k↓), B(k↑), C(k↑), D(k↓), and the number-of-particles
operators:

Ĥ =
∑

k

(ε(�k) − µ↑)n̂�k↑ +
∑

�k
(ε(�k) − µ↓)n̂�k↓

+
∑

k

Â(�k↓)n̂�k↓ +
∑

k

Ĉ(�k↑)n̂k̂↓ +
∑

�k
D̂(�k↓)n̂�k↓, (22)

where

Ĥ3 =
∑

�k
A(�k↓)n̂�k↑; (23)

Ĥ4 =
∑

�k
B(�k↑)n̂�k↓; (24)

Ĥ5 =
∑

�k
C(�k↑)n̂�k↑; (25)

Ĥ6 =
∑

�k
D(�k↓)n̂�k↓. (26)

The local-field operators are assumed to be hermitian and to commute with creation
and annihilation operators.

The equation of motion for the spin-up creation operator is

dâ+
k↑(τ )

dτ
= [Ĥ , â+

k↑(τ )] = [Ĥ1, â
+
k↑(τ )] + [Ĥ2, â

+
k↑(τ )] + [Ĥ3, â

+
k↑(τ )]

+[Ĥ4, â
+
k↑(τ )] + [Ĥ5, â

+
k↑(τ )] + [Ĥ6, â

+
k↑(τ )]. (27)

We find that [Ĥ2, â
+
k↑(τ )] = 0 and [Ĥ6, â

+
k↑(τ )] = 0. With Ĥ3 = Ĥ4, we can rewrite

Eq. (27) as

dâ+
k↑(τ )

dτ
= [Ĥ1, â

+
k↑(τ )] + [Ĥ3, â

+
k↑(τ )] + [Ĥ5, â

+
k↑(τ )]
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= (ε(k) − µ↑)a+
k↑ +

∑
�q

[A(�q↓)n̂q↑, â+
�k↑] +

∑
�q

[C(�q↑)n̂q↑, â+
�k↑]

= (ε(k) − µ↑)â+
�k↑ +

∑
�q

A(�q↓)[n̂q↑, â+
�k↑] + C(�q↑)[n̂q↑, â+

�k↑]

= [ε(k) − µ↑ + 2Â(k↓) + C(k↑)]â+
k↑;

= F̂ (k↑↓)â+
k↑(τ ), (28)

where

F̂ (k↑↓) ≡ ε(k) − µ↑ + 2Â(k↓) + Ĉ(k↑). (29)

The local-field operators Â(k↓) and Ĉ(k↑) are calculated as

[Ĥ3, â
+
k↑(τ )] = Â(�k↓)â+

�k↑;

Â(�k↓) = (âk↑, [Ĥ3, â
+
k↑(τ )]) = 1

2�

∑
�q

V (0)â+
�q↓â�q↓

= V (0)
N↓
2�

. (30)

where N↓ is the number of the spin-down particles.
In the same way,

Ĉ(�k↑) = (âk↑, [Ĥ5, â
+
k↑(τ )]) = 1

�

∑
�q

(V (0) − V (�k − �q))â+
�q↑â�q↑. (31)

Similarly, the equation of motion for the spin-down creation operator is

dâ+
k↓(τ )

dτ
= Ĝ(�k↑↓)â+

k↓(τ ), (32)

where

Ĝ(k↑↓) ≡ ε(k) − µ↓ + 2B̂(k↑) + D̂(k↓). (33)

We can find the local-field operators B̂(k↑) and D̂(k↓) as

B̂(�k↑) = (âk↓, [Ĥ4, â
+
k↓(τ )]) = 1

2�

∑
�q

V (0)â+
�q↑â�q↑ = V (0)

N↑
2�

; (34)

where N↑ is number of the spin-up particles.

D̂(�k↓) = (âk↓, [Ĥ6, â
+
k↓(τ )]) = 1

�

∑
�q

(V (0) − V (�k − �q))â+
�q↓â�q↓. (35)
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The operators A(k↓) and B(k↑) are constant field operators; they constitute
the ‘ether background,’ these terms shift the chemical potential for spin-up and
spin-down states. The excited local-field operators are

F̂ex(�k↑) = ε(k) − µ↑ + 1

�

∑
�q

(V (�q) − V (�k − �q))â+
�q↑â�q↑; (36)

Ĝex(k↓) = ε(k) − µ↓ + 1

�

∑
�q

(V (�q) − V (�k − �q))â+
�q↓â�q↓. (37)

Thus, the excitation grand Hamiltonian describing a neutral spin-polarized
fermionic system is

Ĥex = Ĥ − Ĥ0 =
∑
�k↑

F̂ex(�k↑)n̂�k↑ +
∑
�k↓

Ĝex(�k↓)n̂�k↓. (38)

The general solution of Eq. (28) is

â+
�k↑(τ ) = â+

�k↑ exp[F̂ex(�k↑)τ ]; (39)

F̂ex(k↑) = 〈F̂ex(k↑)〉 + �F̂ex(k↑).

Substituting this into Eq. (39), we obtain

â+
�k↑(τ ) = â+

�k↑ exp[(〈F̂ex(k↑)〉 + �Fex(k↑))t]

= â+
�k↑ exp[〈F̂ex(k↑)〉τ ] exp(�F̂ex(k↑)τ ). (40)

In the SFA, the square of the quadratic fluctuation operator can be replaced with
its mean value:

(�F̂ex(k↑))2 = 〈(�F̂ex(k↑))2〉 = ϕ2
F((k↑)); (41)

(�Ĝex(k↓))2 = 〈(Ĝex(k↓))2〉 = ϕ2
G((k↓)). (42)

It is more convenient to rewrite (40) as linear in terms of the fluctuations of the
local-field operator; this can be done with the aid of the identity:

B(a + b�F̂ex(k↑)) ≡ η0↑(k) + η1↑(k)�F̂ex(k↑), (43)

where

η0↑(k) = 1

2
[B(a + bϕF(k↑) + [B(a − bϕF(k↑)]; (44)

η1↑(k) = 1

2ϕF
[B(a + bϕF(k↑) − [B(a − bϕF(k↑)]. (45)
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According to this identity, we can write (40) in the final form:

â+
�k↑(τ ) = â+

�k↑ exp(〈F̂ex(k↑)〉τ )

[
cosh(ϕF(k↑)τ ) + �F̂ex(k↑)

ϕF(k↑)
sinh(ϕF(k↑)τ )

]
.

(46)
By using the identity

〈Ĉ(β)B̂〉 ≡ 〈B̂Ĉ〉 ≡ 1

Q
Tr[exp(−βĤ )B̂Ĉ], (47)

Q being grand partition function of the system; then replacing τ with β ≡ 1/kBT, kB

being Boltzmann’s constant and T the absolute temperature; and invoking Eq. (46),
we can obtain the so-called long-range equation (Al-Sugheir and Ghassib, 2002):

〈n̂k↑Â〉 = η0↑(k)〈Â〉 + η1↑(k)〈�F̂ex(k↑)Â〉. (48)

The operator Â is chosen to commute with the creation and annihilation operators
as well as local-field operators:

η0↑(k) =
1

2

{
1

exp[β(〈F̂ex(k↑)〉 + ϕF(k↑))] + 1
+ 1

exp[β(〈F̂ex(k↑)〉 − ϕF(k↑))] + 1

}
; (49)

and

η1↑(k) = 1

2ϕF(k↑)

{
1

exp[β(〈F̂ex(k↑)〉 + ϕF(k↑))] + 1

− 1

exp[β(〈F̂ex(k↑)〉 − ϕF(k↑))] + 1

}
. (50)

Similarly, we can obtain the following equations for the spin-down
subsystem:

â+
�k↓(τ ) = â+

�k↓ exp(〈Ĝex(k↓)〉τ )

[
cosh(ϕG(k↓)τ ) + �Ĝex(k↓)

ϕG(k↓)
sinh(ϕG(k↓)τ )

]
;

(51)

〈n̂k↓Â〉 = η0↓(k)〈Â〉 + η1↓(k)〈�Ĝex(k↓)Â〉, (52)

where

η0↓(k) = 1

2

{
1

exp[β(〈Ĝex(k↓)〉 + ϕG(k↓))] + 1

+ 1

exp[β(〈Ĝex(k↓)〉 − ϕG(k↓))] + 1

}
; (53)
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and

η1↓(k) = 1

2ϕG(k↓)

{
1

exp[β(〈Ĝex(k↓)〉 + ϕG(k↓))] + 1

− 1

exp[β(〈Ĝex(k↓)〉 − ϕG(k↓))] + 1

}
. (54)

We can now find the closed system of nonlinear integral equations for spin-up
and spin-down subsystems from the long-range equations. First, putting Â = 1 in
Eq. (48), we have the spin-up particle distribution, where the quadratic fluctuations
are symmetric, 〈�F̂ex(k↑)〉 = 0:

〈n̂k↑〉 = η0↑(k). (55)

Substituting Eq. (55) in the long-range equation (48), we obtain

〈�n̂k↑Â〉 = −η1↑(k)〈�F̂ex(k↑)Â〉. (56)

Putting Â = �n̂qλ in this equation, where q �= k, we have the pair correlation
function 〈�n̂k↑�n̂qλ〉c, the index c denoting the true correlations q �= k or λ �=↑:

〈�n̂k↑�n̂qλ〉c = −η1↑(k)〈�F̂ex(k↑)�n̂qλ〉c

= −η1↑(k)

�

∑
�p

W (�k, �p)〈�n̂p↑�n̂qλ〉, (57)

where

W (�k, �p) ≡ V ( �p) − V (�k − �p).

Now, If k �= q then λ =↑ or λ =↓; and we find the pair correlation function:

〈�n̂k↑�n̂q↑〉c = −η1↑(k)

�

∑
�p

W (�k, �p)〈�n̂p↑�n̂q↑〉; (58)

〈�n̂k↑�n̂q↓〉c = −η1↑(k)

�

∑
�p

W (�k, �p)〈�n̂p↑�n̂q↓〉. (59)

The closed set of nonlinear integral equations for the spin-polarized 3He–HeII
mixture is, then:

For the spin-up subsystem:

F̂ex(�k↑) = ε(k) − µ↑ + 1

�

∑
�q

W (�k, �q)â+
�q↑â�q↑; (60)

〈nk↑〉 = η0↑(k) (61)
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〈(�nk↑)2〉 = −kβT
∂〈nk↑〉
∂µ↑

= 〈nk↑〉 (
1 − 〈nk↑〉) ; (62)

〈�nk↑�nq↑〉c = −η1↑(k)

�

∑
�p

W (�k, �p)〈�np↑�nq↑〉; (63)

〈�np↑�nq↑〉 = 〈(�nq↑)2〉δpq + 〈�np↑�nq↑〉c; (64)

and substituting Â = �F̂ex in Eq. (56), we have

η1↑(k)ϕ2
F(k↑) = − 1

�

∑
�p

W (�k, �p)〈�nk↑�np↑〉c. (65)

In a similar manner, the closed set of nonlinear integral equations for the
spin-down subsystem is:

Ĝex(k↓) = ε(k) − µ↓ + 1

�

∑
�q

W (�k, �q)â+
�q↓â�q↓; (66)

〈nk↓〉 = η0↓(k) (67)

〈(�nk↓)2〉 = −kβT
∂〈nk↓〉
∂µ↓

= 〈nk↓〉 (
1 − 〈nk↓〉) ;

〈�nk↓�nq↓〉c = −η1↓(k)

�

∑
�p

W (�k, �p)〈�np↓�nq↓〉; (68)

〈�np↓�nq↓〉 = 〈(�nq↓)2〉δpq + 〈�np↓�nq↓〉c; (69)

and

η1↓(k)ϕ2
G(k↓) = − 1

�

∑
�p

W (�k, �p)〈�nk↓�np↓〉c. (70)

We now have the closed system of nonlinear integral equations consisting of
〈F̂ex(k↑)〉, 〈n̂k↑〉, 〈(�n̂k↑)2〉, 〈�n̂k↑�n̂q↑〉c, ϕF(k↓) for the spin-up system; and
〈Ĝex(k↓)〉, 〈n̂k↓〉, 〈(�n̂k↓)2〉, 〈�n̂k↓�n̂q↓〉c, ϕG(k↓) for the spin-down system.
These nonlinear integral equations will be solved numerically by Gaussian quadra-
ture (Ali, 1997; Bishop et al., 1977; Burden and Faires, 1993; Ghassib et al.,
1976).

To calculate the thermodynamic properties of the system, we should first
calculate the grand partition function Q. The usual definition is
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Fig. 1. The mean internal energy per unit volume U/�

for the spin-polarized 3He–HeII mixture as a function of
temperature T at different values of spin polarization p.

Q = Tr(exp(−βĤ )

=
∑

nk↑,nk↓

exp

[
−β(

∑
�k

F̂ex(k↑)n̂k↑ +
∑

�k
(Ĝex(k↓)n̂k↓)

]
(71)

=
∏

�k

∑
nk↑,nk↓

exp(−β(F̂ex(k↑)n̂k↑ + Ĝex(k↓)n̂k↓)). (72)

For Fermi systems, nk↑ = 0, 1; nk↓ = 0, 1; so that Eq. (72) becomes

Q =
∏

�k
[1 + exp(−βF̂ex(k↑))][1 + exp(−βĜex(k↓))]

=
∏

�k
[1 + exp(−βF̂ex(k↑))]

∏
�k

[1 + exp(−βĜex(k↓))]. (73)

The grand partition function Q is the product of the grand partition functions of
the two subsystems:

Q = Q↑Q↓,
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Fig. 2. The pressure P for the spin-polarized 3He–HeII mixture as a function
of temperature T at different values of spin polarization p.

where

Q↑ =
∏

�k
[1 + exp(−βF̂ex(k↑))]; (74)

and

Q↓ =
∏

�k
[1 + exp(−βĜex(k↓))]. (75)

It is more convenient to take the logarithms of both sides:

ln Q↑ = ln
∏

�k
[1 + exp(−βF̂ex(k↑))]

=
∑

�k
ln[1 + exp(−βF̂ex(k↑))]

=
∑

�k
〈q0↑(k) + q1↑(k)�F̂ex(k↑)〉

From the symmetry of the quadratic fluctuations of the local-field operator, we get

ln Q↑ =
∑

�k
q0↑(k); (76)
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Fig. 3. The entropy per unit volume S/� for the spin-polarized
3He–HeII mixture as a function of temperature T at different values
of spin polarization p.

where

q0↑(k) = 1

2
ln[(1 + exp(−β(〈F̂ex(k↑)〉 + ϕF(k↑))))

×(1 + exp(−β(〈F̂ex(k↑)〉 − ϕF(k↑))))]. (77)

Similarly, for the spin-down subsystem:

ln Q↓ =
∑

�k
q0↓(k),

where

q0↓(k) = 1

2
ln[(1 + exp(−β(〈Ĝex(k↓)〉 + ϕG(k↓))))

×(1 + exp(−β(〈Gex(k↓)〉 − ϕG(k↓))))]. (78)

The logarithm of the total grand partition function is, then,

ln Q = ln Q↑ + ln Q↓

=
∑

�k
q0↑ +

∑
�k

q0↓(k). (79)

The mean internal energy is

U = −
(

∂ ln Q

∂β

)
Z,�

, (80)



Spin-Polarized 3He–HeII Mixtures in the SFA 173

Fig. 4. The specific heat capacity per unit volume Cv /� for the spin-polarized 3He–HeII
mixture as a function of temperature T at different values of spin polarization p.

Fig. 5. The mean internal energy per unit volume U/� for the spin-polarized 3He–HeII
mixture as a function of spin polarization p at different values of temperature T.
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Fig. 6. The pressure P for the spin-polarized 3He–HeII mixture as a function
of spin polarization p at different values of temperature T.

where z ≡ exp(βµ) is the fugacity;
(

∂q0↑(k)

∂β

)
Z↓,�

= 1

2

(
〈F̂ex(k↑)〉 + µ↑ + ϕF(k↑)

exp(β(〈F̂ex(k↑)〉 + ϕF(k↑))) + 1
+ 〈F̂ex(k↑)〉 + µ↑ − ϕF(k↑)

exp(β(〈F̂ex(k↑)〉 − ϕF(k↑))) + 1

)
; (81)

(
∂q0↓(k)

∂β

)
Z↓,�

= 1

2

(
〈Ĝex(k↓)〉 + µ↓ + ϕG(k↓)

exp(β(〈Ĝex(k↓)〉 + ϕG(k↓))) + 1
+ 〈Ĝex(k↑)〉 + µ↓ − ϕG(k↓)

exp(β(〈Ĝex(k↑)〉 − ϕG(k↓))) + 1

)
; (82)

U =
∑

�k

(
∂q0↑(k)

∂β

)
Z↑

+
∑

k

(
∂q0↓(k)

∂β

)
Z↓

. (83)

Fig. 7. The entropy per unit volume S/� for the spin-polarized
3He–HeII mixture as a function of spin polarization p at different
values of temperature T.
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Fig. 8. The specific heat capacity per unit volume Cv /� for the spin-polarized
3He–HeII mixture as a function of spin polarization p at different values of
temperature T.

From the grand partition function and the mean internal energy, it is simple
to evaluate the other thermodynamic properties:

The usual definition of the pressure is given by (Huang, 1987; Pathria, 2004)

P = kBT
ln Q

�
. (84)

The entropy of the system can be evaluated from the first law of thermody-
namics:

S = 1

T
(U + P� − µ↑N↑ − µ↓N↓). (85)

The specific heat capacity of the system at constant volume is

Cv =
(

∂
(
U − µ↑N↑ − µ↓N↓

)
∂T

)
�

. (86)

Finally, the chemical potentials of the spin-up and spin-down subsystems, which
play a crucial role in calculating the functions η0↑(k), η1↑(k), η0↓(k), and η1↓(k)
are calculated according the conditions

ρ3↑ = 1

�

∑
�k

〈n̂�k↑〉; ρ3↓ = 1

�

∑
�k

〈n̂�k↓〉, (87)

where ρ3↑ (ρ3↓) is the number density of spin-up (-down) 3He particles in the
mixture.



176 Sandouqa, Al-Sugheir, and Ghassib

Fig. 9. The chemical potential for the spin-up subsystem of spin-polarized
3He–HeII mixtures as a function of temperature T at different values of spin
polarization p.

The number density of 3He particles in HeII for volume differential coefficient
α = 0.284 is given by

ρ3 = 6.022 × 1029x

27.58(1 + 0.284x)
(atoms m−3), (88)

x being the concentration of 3He in HeII.

3. CALCULATIONS

In the thermodynamic limit, the summation in the closed sets for spin-up and
spin-down particles can be changed to integration. After integrating over the solid
angle, the closed set of equations for the spin-up subsystem becomes

〈F̂ex(k↑)〉 = ε(k) − µ↑ + 1

2π2

∫ ∞

0
W (k, p)〈n̂q↑〉p2dp; (89)

〈�nk↑�nq↑〉c = −η1↑(k)

2π2

∫ ∞

0
W (k, p))〈�n̂p↑�n̂q↑〉p2dp; (90)

η1↑(k)ϕ2
F(k↑) = − 1

2π2

∫ ∞

0
W (k, p)〈�nk↑�np↑〉cp2dp. (91)
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Fig. 10. The chemical potential for the spin-down subsystem of spin-polarized 3He–HeII mixtures
as a function of temperature T at different values of spin polarization p.

For the spin-down subsystem:

〈Ĝex(k↓)〉 = ε(k) − µ↓ + 1

2π2

∫ ∞

0
W (k, p)〈n̂q↓〉p2dp; (92)

〈�nk↓�nq↓〉c = −η1↓(k)

2π2

∫ ∞

0
W (k, p)〈�np↓�nq↓〉p2dp; (93)

η1↓(k)ϕ2
G(k↓) = − 1

2π2

∫ ∞

0
W (k, p)〈�nk↓�np↓〉cp2dp, (94)

where W (k, p) ≡ V (p, 0) − V (k, p), V (k, p) being the Fourier–Bessel transform
of the potential, defined as

V (k, p) = 4π

∫ ∞

0
V (r)

sin(kr)

kr

sin(pr)

pr
r2dr. (95)

The integrands in (89)–(94) are calculated by Gaussian quadrature (Ali, 1997;
Bishop et al., 1977; Ghassib et al., 1976). Our set of nonlinear integral equations
have been solved numerically by an iteration method for a realistic interhelium
potential. The effective interaction in configuration space between two 3He quasi-
particles embedded in HeII is the sum of three physical effects (Campbell, 1967).
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Table I. Fermi Temperatures for Spin-Up and
Spin-Down Subsystems at Different Values of

Spin Polarization p

Polarization, p TF↑ (mK) TF↓ (mK)

0 37.3 37.3
0.2 45.4 29.8
0.4 53.4 24.6
0.6 58.1 16.7

The first effect is the direct 3He–HeII interaction, V33. To this end, we have used
one of the most highly acclaimed interatomic helium potentials, the so-called
HFDHE2 (Aziz et al., 1979; Janzen and Aziz, 1995):

V33(r) = εA exp(−βx) −
(

C6

x6
+ C8

x8
+ C10

x10

)
εf (x); (96)

where

f (x) =
{

exp
[
− (

D
x

− 1
)2

]
, x < D

1, x ≥ D

}
; (97)

x ≡ r
rm

; xm = 2.98 Å; D = 1.24; A = 0.554 × 106; β = 13.35; C6 = 1.373;
C8 = 0.425; C10 = 0.178; ε = 10.8 K.

The second effect is the induced potential arising from the interaction between
the 3He atom with the HeII background through the bare potential V34:

V34(r) = −2(1 + α)V34([r34])g(r), (98)

where

g(r) =
{

3y

4 − y3

16 , y ≤ 2
1, y > 2

}
, (99)

with

y ≡ r

(
4π

3ω3

)1/3

; ω3 = (1 + α)ω4. (100)

Here, ω3 (ω4) is the volume per particle occupied by a 3He (4He) atom, and [r34] ≡
max(4.0, r). The third effect is associated with the induced potential HeII–HeII
background interaction through the bare potential V44:

V44 = (1 + α)2V44([r44])g2(r), (101)

where [r44] ≡ max(3.8, r).
The total effective interatomic potential between two 3He atoms is, therefore,

V (r) = V33(r) + V34(r) + V44(r). (102)
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Fig. 11. The mean internal energy per unit volume
U/� for the spin-polarized 3He–HeII mixture as a
function of concentration at temperature T = 0.02 K
and spin polarization p = 0.2.

The Fourier–Bessel transform of the effective interatomic potential is calculated
by the same method for the bare potential HFDHE2 (Aziz et al., 1979; Janzen and
Aziz, 1995). Throughout our calculations the effective mass m∗

3 = 2.35m3 and a
natural system of units is used, such that h = 1 = m3 where m3 is 3He atomic
mass, the conversion factor being h2/m3 = 16.0838 K.Å2 (Bishop et al., 1977).

4. RESULTS AND DISCUSSION

The thermodynamic properties of the dilute spin-polarized 3He–HeII mixture
for a 3He concentration of 0.1% were studied at temperature below the Fermi
temperature at different values of temperatures and spin polarization. Also, the
mean internal energy per unit volume and pressure were studied as functions of
concentration at constant temperature and spin polarization.

The mean internal energy per unit volume, pressure, entropy per unit volume,
specific heat per unit volume, and chemical potential were calculated at different
temperatures and at different values of spin polarization.

Figures 1–4 show the numerical calculations of the thermodynamic properties
of the spin-polarized 3He–HeII mixture as functions of temperature T at different
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Fig. 12. The pressure P for the spin-polarized 3He–HeII mixture
as a function of concentration at temperature T = 0.02 K and spin
polarization p = 0.2.

values of spin polarization. The mean internal energy per unit volume, the pressure,
the entropy per unit volume, and the specific heat per unit volume increase with
increasing temperature.

Figures 5–8 show the numerical calculations of the thermodynamic properties
of spin-polarized 3He–HeII mixtures as functions of spin polarization p at different
values of temperature. From these figures, we note that the mean internal energy
per unit volume and the pressure increase with increasing spin polarization; while
the entropy per unit volume and the specific heat per unit volume are weakly
dependent on spin polarization.

Figures 9 and 10 show the effective chemical potentials as functions of
temperature for spin-up and spin-down subsystems at different values of spin
polarization. The increase in the chemical potential of the spin-up subsystem with
polarization is obviously caused by the increase of the density of spin-up particles;
while the chemical potential of the spin-down subsystem deceases because of the
decrease in density of spin-down particles. From these figures, we note that the two
subsystems of spin-polarized mixtures have different Fermi temperatures TF↑ and
TF↓, TF↑ being larger the TF↓ as shown in Table I. If T < TF↓ the two subsystems
are degenerate; but if T > TF↑, the two subsystems are classical. The interesting
feature is that when TF↓ < T < TF↑, there is a region where the spin-up subsystem
is degenerate and the spin-down subsystem is classical.

Figures 11 and 12 show the numerical calculations of the mean internal
energy per unit volume and the pressure of the spin-polarized 3He–HeII mixture
as functions of concentration at constant temperature and spin polarization.
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5. CONCLUSION

The SFA has been used to study spin-polarized 3He–HeII mixtures for the
first time. It has been found that the SFA is valid for this system at low tem-
peratures (≤0.025 K). We have found that the spin-polarized 3He atoms exist in
two subsystems: spin-up and spin-down. The basic achievements of this paper
are, then, (1) the full derivation of the SFA, for the first time, for spin-polarized
3He–HeII mixtures; and (2) the calculation of the thermodynamic properties of
these mixtures at temperatures ≤0.025 K. We have found that the mean internal
energy per unit volume, the pressure, the entropy per unit volume, and the specific
heat per unit volume increase with increasing temperature. The mean internal
energy per unit volume and the pressure increase with increasing spin polariza-
tion; while the entropy per unit volume and the specific heat per unit volume are
weakly-dependent on spin polarization.
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